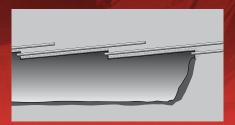


AT – Pipe Umbrella System

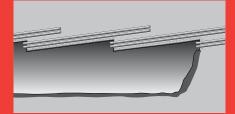
Groundbreaking Forepoling Technology |

Robodaill



Fields of Application

- Advances in weak or heavily sheared ground
- Ground conditions prone to subsidence
- Advances in fault zones, sediments, or talus
- Frequently changing ground conditions
- Portal sections
- Re-excavation of collapsed drifts or tunnels
- Urban Tunneling


Single AT – Pipe Umbrella

Single AT – Pipe Umbrella with Double Overlap

Double AT – Pipe Umbrella

Contents

Fields of Application	2
Introduction	4
Main Advantages	4
System Components	4
Pipe Umbrella Design	5
Support Effects	5
Design Criteria	5
Pipe Connection Types	6
Standard Threaded Connection	6
Squeezed Connection	6
Squeezing Unit	6
Nipple Coupling	6
Comparison Pipe Connections	7
Groundbreaking Technology	8
Enhanced Working Safety	8
Proven Cycle Time Savings	9
Improved Load-Bearing Capacity	10
Optimized Quality	11
Utilization Rate	11
Specifications SI Units	12
Specifications US Customary Units	13
Self-Drilling Installation Technology	14
Installation Method	14
Starter Unit	14
Installation Procedure Using the AT – Pipe Umbrella Automation Unit	15
AT – Pipe Umbrella Automation Unit	16
Main Advantages	16
Mechanized Installation – Selection of the Required Degree	16
Comparison of Pipe Consumption and Over-Excavation	17
Assembly Groups – Squeezing Unit	18
Assembly Groups – Threading Unit	19
Mounted Assembly Groups	20
Accessories	21
Mechanized Tunneling	21
References	22
AT – Pipe Umbrella System at a Glance	23

The AT – Pipe Umbrella System is a pre-support measure used in weak ground conditions in conventional as well as mechanized Tunneling.

Long forepoling using the pipe umbrella or canopy method is typically applied to increase safety and stability in the working area of standard advance operations, portals, and for re-excavating collapsed sections.

Another application is ground improvement and waterproofing in combination with all tunnel construction methods. Pipe umbrella pipes – installed into the ground prior to excavation – increase the stability in the working area by transferring loads in the longitudinal direction and decrease excavation induced deformations. DSI Underground has developed a superior pipe connection type, which allows the reduction of installation cycle times while increasing the load-bearing capacity.

State-of-the art pipe umbrella support systems are installed self-drilling where the casing provides an immediate support of the borehole, compared to outdated pre-drilling systems where borehole drilling and pipe installation takes place in two different working steps.

Fully mechanized installation is becoming a mandatory safety standard in the global Tunneling business.

DSI Underground is the leading system supplier in the development and application of safe and efficient pipe umbrella installation technology.

Main Advantages

- Supreme safety due to fully mechanized installation
- Efficient self-drilling installation technology
- The fastest pipe umbrella system on the market
- Installation with conventional drilling machines
- Implementation of pipe umbrella drilling with on-site personnel
- Reliable and robust system components
- Piecewise pipe installation allows flexible lengths
- Simple application in confined space
- Superior load-bearing capacity of innovative pipe couplings

System Components

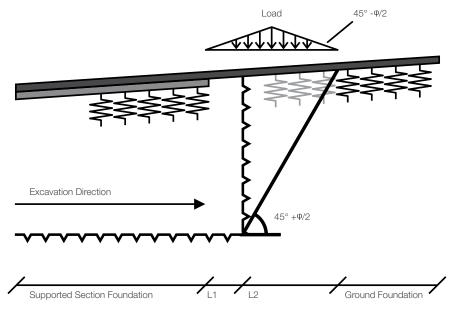
Consumables

- Starter unit with drill bit
- Pipe umbrella pipes
- Injection valves

Multiple-Use Accessories

- Drill bit adapter
- Drill steel
- Grouting packer

Pipe Umbrella Design


Support Effects

Pipe umbrella support systems with a typical installation length in the range of 12 [m] to 18 [m] are considered to be a long forepoling system. From a design perspective, supporting measures can be divided into three different effects:

- Subdivision of the unsupported zone in the open span of the working area
- Radial supporting effect
- Longitudinal supporting effect

Their interaction results in the support of the working area and face region. Loads in this critical section are transferred by each single umbrella pipe in the longitudinal direction to its foundations – the ground ahead of excavation and the already installed primary lining.

Pipe umbrella pipes are primarily loaded by bending. Therefore, the relevant design parameter is the maximum elastic moment of the system. The benchmark criterion is the performance of the weakest link, which usually is the pipe connection.

Volkmann & Schubert 2010

Design Criteria

There are two common design criteria for the load transfer of pipe umbrella pipes:

- Maximum elastic moment M_y of both the standard pipe and the pipe connection – pure elastic design
- Elastic moment M_y of the standard pipe in combination with the ultimate moment M_{ult} of the pipe connection – elastic-plastic design

For both criteria, parameters relevant for design (M_y and M_{ult}) are product specific and must be verified by adequate certificates from the manufacturer before installation.

In case plastic material reserves of steel are activated by plastic joints in the pipe connection area, a safety factor of at least 1.3 to the tested value M_{ult} is recommended:

$M_{ult, pipe connection} \ge 1.3 M_{y, standard pipe}$

This allows an elastic calculation and dimensioning of standard pipe umbrella pipes featuring state-of-the-art pipe connections without any further reduction of the load-bearing capacity.

Pipe Connection Types

Standard Threaded Connection

For a standard threaded connection, outside and inside threads are cut into both ends of each pipe umbrella pipe. This connection type reduces the crosssection of the pipe in the threaded area. This way, the section modulus is decreased as well. The internal pipe diameter in the connection area stays constant. Besides the geometrical conditions of the thread, the overall quality of threaded pipes is a concern for the load-bearing capacity. In general, calibrated pipes reach a higher resistance against bending than non-calibrated ones.

Squeezed Connection

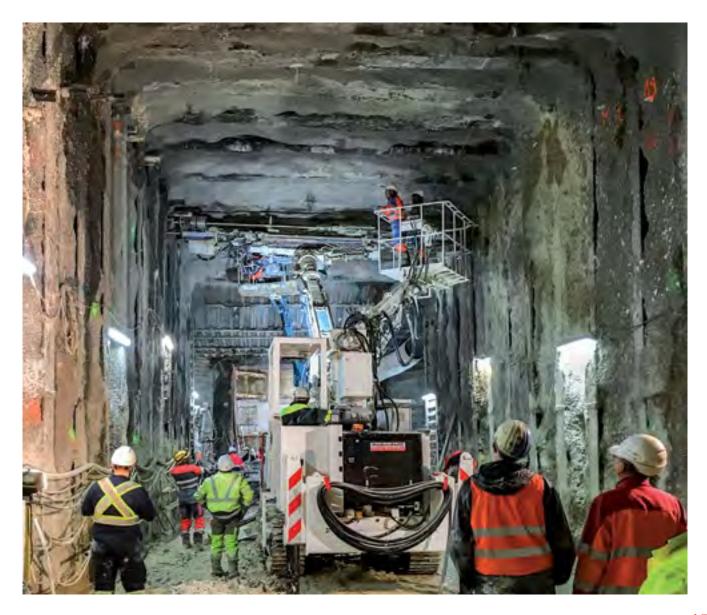
A squeezed connection consists of a prefabricated reduced male pipe end, which is force-fitted with its female counter piece using a hydraulic clamping cylinder. In the coupling area, the cross section stays constant and the section modulus is decreased. The internal pipe diameter in the connection area is reduced.

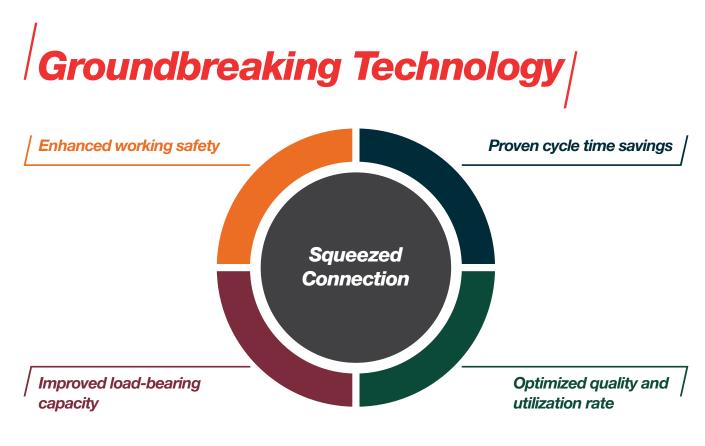
This pipe connection type can be recommended where a pipe umbrella is installed because of its static loadbearing capacity.

Squeezing Unit

- Application in combination with default drilling machines
- Easy to handle and remote-controlled
- Safe and rapid pipe connection
- Hydraulically driven

Nipple Coupling


Nipple couplings consist of an additional threaded steel nipple that is pressed and welded into both ends of the pipe umbrella pipes. This connection type ensures that the second moment of inertia of the coupling is not lower than the second moment of inertia of the default pipe. The internal pipe diameter in the connection area is reduced.


This pipe connection type can be recommended for advances where enhanced static load-bearing capacity is required and settlement limitations are part of the design.

Comparison Pipe Connections

Criterion	Standard Threaded Connection	Squeezed Connection	Nipple Coupling
Connection type	Outside and inside thread is cut into the ends of the pipe umbrella pipes	Reduced pipe end force-fitted with its counter piece	Threaded steel nipple, pressed and welded into both ends of pipe umbrella pipes
Static influence	Significant reduction of pipe cross-section and section modulus in the thread connection area	Constant cross section and reduced section modulus in the coupling area	Second moment of inertia at the coupling is not lower than the second moment of inertia of the standard pipe
Elastic behavior	Stiffness and strength are considerably lower than those of standard pipes	Reduction of the stiffness against bending in the connection area	Stiffness and strength are adequate to standard pipes
Ultimate behavior	Rupture load of connections can be lower than elastic load of standard pipes	Ultimate load is higher than the elastic design load of a standard pipe (> 1.5)	Higher rupture load of connections compared to standard pipes
Recommended usage	Installation of measurement instrumentations or ground improving injections	Pipe umbrella with a designed static load-bearing capacity	Projects where settlement limitations are part of the design

Enhanced Working Safety

- Remote-controlled operation allows a safe pipe connection
- No manual work during the pipe connecting working step
- Integrated drill rod wrench allows safe manipulation of drill steel

- Reduction of physical labor required

Conventional (Threaded) Installation

Manual connection of pipe umbrella pipes: chain pipe wrench

Manual connection and disconnection of drill rods: drill rod wrench

Direct exposure of personnel to moving drilling tools and hydraulic drifter

Squeezed Connection

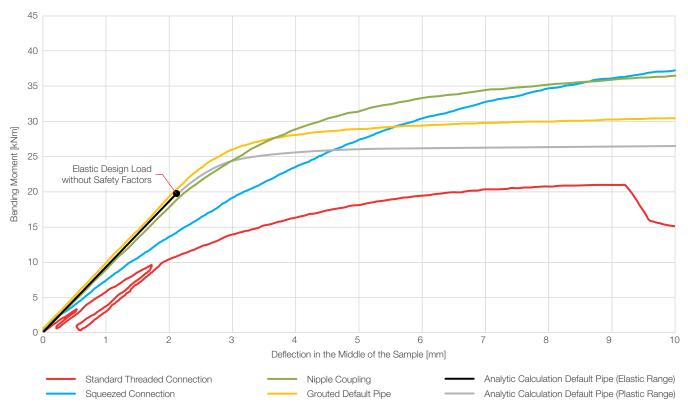
Remote-controlled pipe connection using a hydraulic cylinder assembly

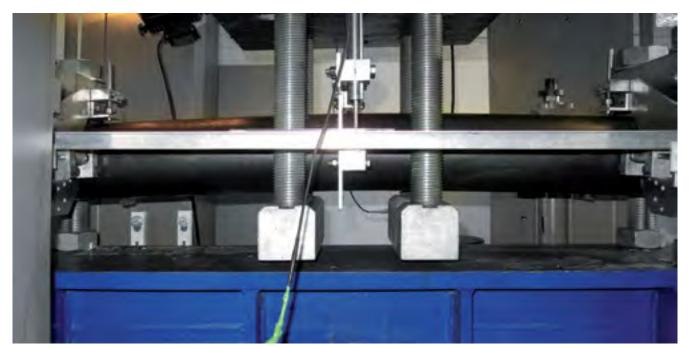
Centralized connection and remote-controlled drill steel disconnection

Limitation of personnel exposed to the operation range of the hydraulic hammer

Proven Cycle Time Savings

- Faster connection process than for standard threads
- Elimination of delays due to jammed or damaged pipes
- Total time savings of approx. 3 hours for an exemplary pipe umbrella (15 pipe umbrella drills, each 18 [m] long)
- Experience: 5% difficult threaded connections (outliers), which require additional handling time


Parameter	Unit	Standard Threaded Connection	Squeezed Connection	Time Savings
No. of pipes	[1]	1	5	_
Single pipe length	[m]	;	3	-
Pile length	[m]	1	8	_
No. of connections	[1]	7	5	-
Single connecting time	[min]	3.5	1.5	2
Single delay time	[min]	10	0	10
No. of difficult connections	[1]	5%	0%	_
Total connecting time	[min]	262.5	112.5	150
Total delay time	[min]	37.5 0		37.5
Sum	[min]	300	112.5	187.5


Improved Load-Bearing Capacity

- Load-transfer based design criteria: elastic and plastic moments of the pipe connection
- Design criterion 2: significantly higher ultimate moment M_{ult} of the pipe connection than the elastic design load (standard pipe)
- Example: comparison pipe couplings AT – 114.3 x 6.3 [mm], steel grade S/E 355 (355 [N/mm²] or 51.5 [ksi])

 Design criterion 1: maximum elastic moment M_y of the pipe connection is improved

Bending Tests: Comparison Pipe Couplings AT – 114.3 x 6.3 [mm]

Optimized Quality

Standard Threaded Connection	Squeezed Connection
Significant difference between default and calibrated pipes provided by DSI Underground	Error-free system
Sufficient thread strength extremely dependent on the quality of the threading	Verified quality for every single pipe connection
Additional impacts on the threads during transport and installation	Robust system and high-strength pipe connection designed for the special demands of the construction industry

Utilization Rate

- Performance-based design approach
 Enhanced load-bearing capacity allows reduction of pipe wall thickness compared to threaded
 - connections - Significant material savings potential with simultaneous increase in performance
- Lower transport weight increases efficiency of logistics
- Easier handling procedures due to decreased weight of single umbrella pipes
- Exemplary parameter study:
 AT 139 Pipe Umbrella System with different connection types and wall thicknesses

Parameter	Unit	Standard Threaded Connection (Calibrated Pipes)		Squeezed Connection	Change Threaded to Squeezed Connection
Pipe dimensions	[mm]	139.7 x 8.0	139.7 x 10	139.7 x 6.3	-
Unit weight	[kg/m]	26.0	32.0	20.7	-20% / -35%
Max. elastic moment $\rm M_{\rm y}$	[kNm]	14.1	18.4	20.4	+45% / +11%

Specifications SI Units

System ¹⁾	Steel Grade ²⁾	Modulus of Elasticity	Yield Strength	Outer Diameter	Wall Thickness	Weight	Section Modulus	Second Moment of Area		
Туре	[-]	[N/mm ²]	[N/mm ²]	[mm]	[mm]	[kg/m]	[cm ³]	[cm4]		
AT – 76				76.1	6.3	10.8	22	85		
				88.9	5.0	10.4	26	116		
AT – 89				88.9	6.3	12.8	32	140		
				88.9	8.0	16.0	38	168		
				114.3	5.0	13.5	45	257		
AT – 114		210.000		114.3	6.3	16.8	55	313		
	E355 or S355		c 010.000	355	114.3	8.0	21.0	66	379	
	E300 01 3300	210.000	000	139.7	5.0	16.6	69	481		
AT 100					139.7	6.3	20.7	84	589	
AT – 139				139.7	8.0	26.0	103	720		
				139.7	10.0	32.0	123	862		
						168.3	10.0	39.0	186	1,564
AT – 168				168.3	12.5	48.0	222	1,868		
				168.3	16.0	60.1	267	2,244		

Constant 1	Outer	Wall		Ultimate (Plastic) Moment M _{ult} ³⁾			
System 1)	Diameter	Thickness	Standard Pipe	Nipple Couplings	Squeezed Connection	Threaded Connection (Calibrated Pipes)	Squeezed Connection 4)
Туре	[mm]	[mm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
AT – 76	76.1	6.3	7.9	N/A	N/A	2.9	N/A
	88.9	5.0	9.3	N/A	5.9	N/A	15.4
AT – 89	88.9	6.3	11.2	N/A	6.5	4.1	21.7
	88.9	8.0	13.4	N/A	N/A	5.4	N/A
	114.3	5.0	16.0	16.0	10.5	N/A	29.3
AT – 114	114.3	6.3	19.4	19.3	12.1	6.9	33.1
	114.3	8.0	23.6	19.3	13.2	9.3	41.8
	139.7	5.0	24.4	24.4	17.5	N/A	41.0
AT 100	139.7	6.3	29.9	29.9	20.4	10.4	50.0
AT – 139	139.7	8.0	36.6	36.6	23.3	14.1	64.0
	139.7	10.0	43.8	38.8	N/A	18.4	N/A
	168.3	10.0	66.0	66.0	N/A	26.0	N/A
AT – 168	168.3	12.5	78.8	69.7	N/A	33.5	N/A
	168.3	16.0	94.7	N/A	N/A	43.2	N/A

1) Deviating structural properties are available on request. Commonly used systems are bold marked. Non-applicable combinations (system and connection type) are indicated by "N/A".

2) Steel grade S355 according to EN 10025-2 or E355 according to EN 10296-1. Alternatively, a carbon steel with a minimum yield strength of 355 [N/mm²] is required.

3) Values for M_i and M_{ut} are product-specific and verified by DSI Underground inspection certificates. Laboratory test reports are available on request.

4) 95% fractile values determined from results of laboratory bending tests performed with samples in accordance with DSI Underground Austria test specifications.

Specifications US Cust. Units

System ¹⁾	Steel Grade ²⁾	Modulus of Elasticity	Yield Strength	Outer Diameter	Wall Thickness	Weight	Section Modulus	Second Moment of Area
Туре	[-]	[ksi]	[ksi]	[in]	[in]	[lb/ft]	[in ³]	[in4]
AT – 76				3.0	0.25	7.3	1.34	2.04
				3.5	0.20	7.0	1.59	2.79
AT – 89				3.5	0.25	8.6	1.95	3.36
				3.5	0.31	10.8	2.32	4.04
			58 ≥ 51.5	4.5	0.20	9.1	2.75	6.17
AT – 114				4.5	0.25	11.3	3.36	7.52
		00 450		4.5	0.31	14.1	4.03	9.11
	E355 or S355	30,458		5.5	0.20	11.2	4.21	11.56
AT 100				5.5	0.25	13.9	5.13	14.15
AT – 139				5.5	0.31	17.5	6.29	17.30
				5.5	0.39	21.5	7.51	20.71
				6.6	0.39	26.2	11.35	37.58
AT – 168				6.6	0.49	32.3	13.55	44.88
			6.6	0.63	40.4	16.29	53.91	

Sustan 1	Outer	Wall		Ultimate (Plastic) Moment M _{ult} ³⁾			
System ¹⁾	Diameter	Thickness	rness Standard Nipple Squeezed Threaded Connection Pipe Couplings Connection (Calibrated Pipes)		Threaded Connection (Calibrated Pipes)	Squeezed Connection 4)	
Туре	[in]	[in]	[lbf·ft]	[lbf·ft]	[lbf·ft]	[lbf·ft]	[lbf·ft]
AT – 76	3.0	0.25	5.83	N/A	N/A	2.14	N/A
	3.5	0.20	6.86	N/A	4.35	N/A	11,360
AT – 89	3.5	0.25	8.26	N/A	4.79	3.02	16,005
	3.5	0.31	9.88	N/A	N/A	3.98	N/A
	4.5	0.20	11.8	11.80	7.74	N/A	21,610
AT – 114	4.5	0.25	14.31	14.23	8.92	5.09	24,415
	4.5	0.31	17.41	14.23	9.74	6.86	30,830
	5.5	0.20	18.00 18 12.91 N/A		30,240		
AT 400	5.5	0.25	22.05	22.05	15.05	7.67	36,880
AT – 139	5.5	0.31	26.99	26.99	17.19	10.40	47,205
	5.5	0.39	32.31	28.62	N/A	13.57	N/A
	6.6	0.39	48.68	48.68	N/A	19.18	N/A
AT – 168	6.6	0.49	58.12	51.41	N/A	24.71	N/A
	6.6	0.63	69.85	N/A	N/A	31.86	N/A

1) Deviating structural properties are available on request. Commonly used systems are bold marked. Non-applicable combinations (system and connection type) are indicated by "N/A".

2) Steel grade S355 according to EN 10025-2 or E355 according to EN 10296-1. Reference: carbon steel with a minimum yield strength of 51.5 [ksi].

3) Values for M_y and M_{ult} are product-specific and verified by DSI Underground inspection certificates. Laboratory test reports are available on request.

4) 95% fractile values determined from results of laboratory bending tests performed with samples in accordance with DSI Underground Austria test specifications.

Self-Drilling Installation Technology

Installation Method

The AT – Pipe Umbrella System is installed:

- Self-drilling
- Piecewise
- With conventional drilling machines
- By hydraulic, rotary-percussive drilling

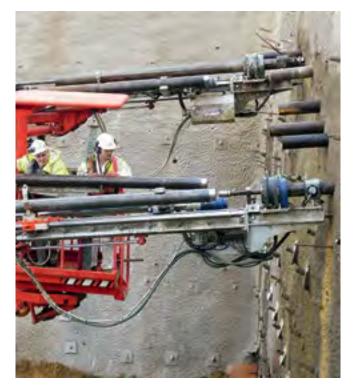
Cooling, flushing, and backflow of the cuttings takes place inside the casing pipes by using water or an air-water mist. Self-drilling installation features the smallest possible stress relaxation due to an immediate support of the borehole wall during installation and an accurate installation due to a minimized annular gap.

The length of piecewise installed pipe umbrella pipes can be adjusted according to project or machinery requirements.

Starter Unit

One important factor in the success of the AT – Pipe Umbrella Support System is the starter unit:

- Single-use full face drill bits ensure the same quality for each drilling process
- Stable drilling direction due to stable drill bit orientation
- Simple connection and disconnection of the drilling adapter
- Proven back-flushing of water inside umbrella pipes
- Loss or blocking of a drill bit is impossible – optimum pre-conditions for achieving the total drilling depth every time
- Starter unit (drill) bit can be adapted to given ground conditions



Installation Procedure Using the AT – Pipe Umbrella Automation Unit

1. For drilling, the starter unit with drill bit is assembled onto the drill boom together with the first extension tube, the adapter, and the drill rod.

2. Installation of the first extension tube.

 The next drill rod with extension tube is connected to the previously installed pipe and the drilling process is continued. Reloading AT – Automation Unit (extension tube and drill rod).

4. The last step is to be repeated until the designed length of the AT – Pipe Umbrella has been installed. Followed by removal of adapter and drill steel.

AT – Pipe Umbrella Automation Unit

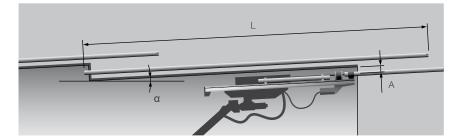
Main Advantages

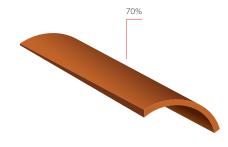
- Compatible with every standard drill jumbo
- Shorter manipulation times due to exact and mechanized feeding
- Faster construction of a pipe umbrella support system
- Higher occupational safety
- No handling in the vicinity of moving parts of the drilling machine
- Simple re-charging of extension pipes via a loading basket
- Remote-controlled feeding

- Less manpower required
- Optimum utilization of the working space
- Smaller saw-tooth shaped profile and thereby less excavation volume

Mechanized Installation - Selection of the Required Degree

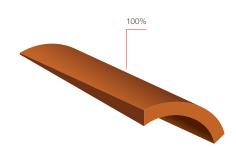
Installation Mode / Characteristics	Pipe Connection Type	Degree of Mechanization	Mechanized Working Steps
Conventional installation	Threaded	0%	N/A
Threading unit	Threaded	50%	Pipe connection, drill steel clamping (wrench)
Squeezing unit	Squeezed	50%	Pipe connection, drill steel clamping (wrench)
AT – Automation Unit	Threaded or Squeezed	100%	Pipe connection, drill steel clamping (wrench), drill steel connection, pipe, and drill steel feeding




Comparison of Pipe Consumption and Over-Excavation

 Different pipe umbrella lengths, conventional, and mechanized installation - Top heading excavation with 6 [m] (19.5 [ft]) radius and 1 [m] (3.3 [ft]) advance length AT – 114 Pipe Umbrella, axial pipe distance 500 [mm] (19.5 [in]), overlap 3.5 [m] (11.5 [ft])

Pipe	Pipes	Excavation	Pipes	Pip	Pipes		echanized lı	nstallatio	n	Co	nventional I	nstallatio	on
Umbrella Length L	per Umbrella	Steps per Umbrella	Installed per Umbrella	р	alled er unnel	Head- Room A	Inclination α		cavation tooth	Head- Room B	Inclination β		cavation tooth
[m]	[1]	[1]	[m]	[m/m]	[%]	[mm]	[°]	[m³]	[m³/m]	[mm]	[°]	[m ³]	[m³/m]
12		8	360	45.0	100%		6.0	63.1	7.9		8.1	89.2	11.2
15	30	11	450	40.9	91%	300	4.4	85.6	7.8	600	5.9	121.1	11.0
18		14	540	38.6	86%		3.5	108.1	7.7		4.7	153.0	10.9
[ft]	[1]	[1]	[ft]	[ft/ft]	[%]	[in]	[°]	[ft ³]	[ft³/ft]	[in]	[°]	[ft ³]	[ft ³ /ft]
39.4		8	1,181	147.6	100%		6.0	2,228	279		8.1	3,150	394
49.2	30	11	1,476	134.2	91%	11,8	4.4	3,023	275	23.6	5.9	4,277	389
59.1		14	1,772	126.5	86%		3.5	3,818	273		4.7	5,403	386


Mechanized Installation

Conventional Installation

Assembly Groups – Squeezing Unit

Specifications SI Units

Characteristics / Assembly Group	Dimensions	Weight
[-]	(L x W x H) [mm]	[kg]
Pipe deposit	1,040 x 230 x 350	28
Squeezing unit	1,165 x 380 x 750	200
Loading unit and pipe feeding system	3,650 x 460/780 x 430/570	160
Center guide	155 x 260 x 230	12
Hydraulic control box squeezing unit	550 x 275 x 345	60
Electric control cabinet squeezing unit	395 x 615 x 355	35
Remote control	250 x 140 x 180	2.3

Characteristics	Unit	Value	Remarks
Total weight (gross)	[kg]	500 - 520	Deviations possible, depending on the type
Electric supply	[V]	24	DC
Hydraulic supply	[L/min]	20 - 25	At approx. 200 [bar]

Specifications US Customary Units

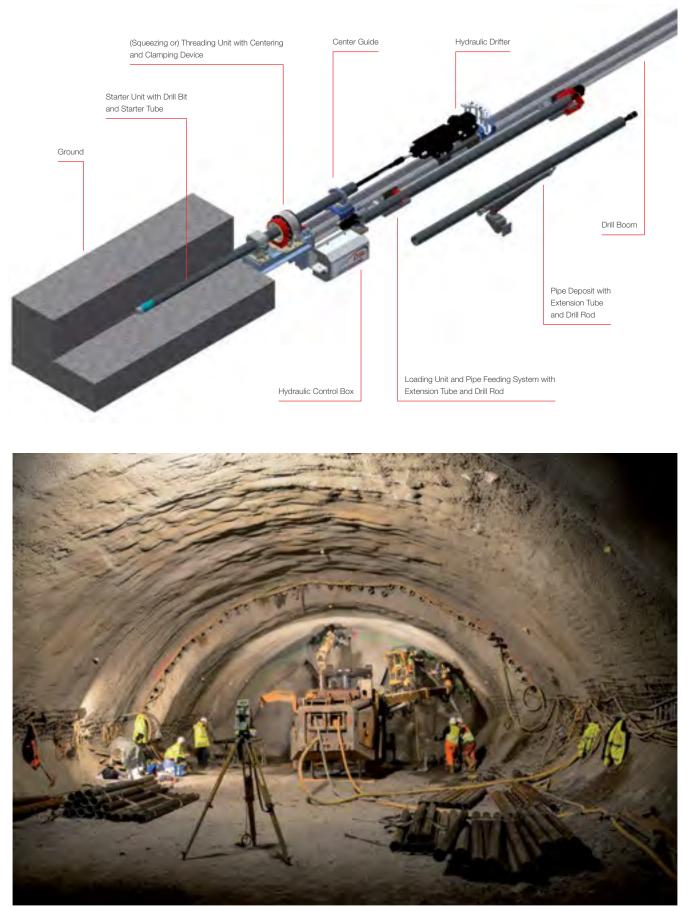
Characteristics / Assembly Group	Dimensions	Weight
[-]	(L x W x H) [in]	[lb]
Pipe deposit	40.9 x 9.1 x 13.8	62
Squeezing unit	45.9 x 15.0 x 29.5	441
Loading unit and pipe feeding system	143.7 x 18.1/30.7 x 16.9/22.4	353
Center guide	6.1 x 10.2 x 9.1	27
Hydraulic control box squeezing unit	21.6 x 10.8 x 13.8	133
Electric control cabinet squeezing unit	15.6 x 24.2 x 14.0	77
Remote control	9.8 x 5.5 x 7.1	5

Characteristics	Unit	Value	Remarks
Total weight (gross)	[lb]	1,100 - 1,150	Deviations possible, depending on the type
Electric supply	[V]	24	DC
Hydraulic supply	[gal/min]	5.3 - 6.6	At approx. 2,900 [psi]

Assembly Groups – Threading Unit

Specifications SI Units

Characteristics / Assembly Group	Dimensions	Weight
[-]	(L x W x H) [mm]	[kg]
Pipe deposit	1,040 x 230 x 350	28
Threading unit with centering and clamping device	1,165 x 370 x 740	160
Loading unit and pipe feeding system	3,650 x 460/780 x 430/570	160
Center guide	155 x 260 x 230	12
Hydraulic control box threading unit	550 x 275 x 345	60
Electric control cabinet threading unit	395 x 615 x 355	35
Remote control	250 x 140 x 180	2.3

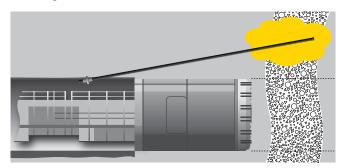

Characteristics	Unit	Value	Remarks
Total weight (gross)	[kg]	460 - 490	Deviations possible, depending on the type
Electric supply	[V]	24	DC
Hydraulic supply	[L/min]	15 - 20	At approx. 170 [bar]

Specifications US Customary Units

Characteristics / Assembly Group	Dimensions	Weight
[-]	$(L \times W \times H)$ [in]	[lb]
Pipe deposit	40.9 x 9.1 x 13.8	62
Threading unit with centering and clamping device	45.9 x 14.6 x 29.1	353
Loading unit and pipe feeding system	143.7 x 18.1/30.7 x 16.9/22.4	353
Center guide	6.1 x 10.2 x 9.1	27
Hydraulic control box threading unit	21.6 x 10.8 x 13.8	133
Electric control cabinet threading unit	15.6 x 24.2 x 14.0	77
Remote control	9.8 x 5.5 x 7.1	5

Characteristics	Unit	Value	Remarks
Total weight (gross)	[lb]	1,010 - 1,080	Deviations possible, depending on the type
Electric supply	[V]	24	DC
Hydraulic supply	[gal/min]	4.0 - 5.3	At approx. 2,500 [psi]

Mounted Assembly Groups


- Injection flow-pressure meter
- Injection packer
- Grout mixing pump
- DSI Inject Systems

- Fishing tab
- Drill rod wrench
- Chain pipe wrench
- Online chain inclinometer measurements
- Online fiber glass measurements
- Rock drilling equipment: shank adapter, coupling, and coupling adapter

Mechanized Tunneling

The AT – Pipe Umbrella Support System can be combined with fiberglass or PVC extension pipes for application in mechanized Tunneling.

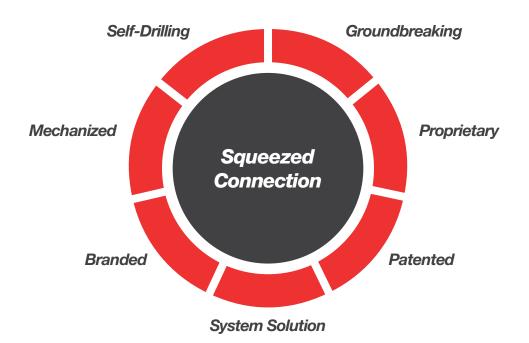
|References|

- Volkmann, G.M. & W. Schubert 2007: "Geotechnical Model for Pipe Roof Supports in Tunneling." In proceedings of the 33rd ITA-AITES World Tunneling Congress, Underground Space – the 4th Dimension of Metropolises, Volume 1. eds. J. Bartak, I.Hrdina, G.Romancov, J. Zlamal, Prague, Czech Republic, 5-10 May 2007, Taylor & Francis Group, ISDN: 978-0- 415-40802. app. 755-760
- Volkmann, G.M. & W. Schubert, 2008: "Tender Document Specifications for Pipe Umbrella Installation Methods." In proceedings of the 34th ITA-A ITES World Tunneling Congress, Agra, India, 22-24 September 2008, pp. 285-293
- Volkmann G.M. & Schubert W. 2010: "A load and load transfer model for pipe umbrella support." In proceedings of EUROCK 2010, Rock Mechanics in Civil and Environmental Engineering – Zhao, Labiouse, Dudt & Mathier (eds),
 2010 Taylor & Francis Group, London, ISBN 978-0-415-58654-2, pp. 379-382

Volkmann, G.M. 2013:

"The AT – Casing System – more than a Pipe Umbrella System." In proceedings of the 12th International Conference Underground Construction Prague 2013. Czech Republic, Prague, 22–24 April 2013, ISBN: 978-80-260-3868-9

- Volkmann, G.M. 2014:
 "Development of State-of-the-Art Connection Types for Pipe Umbrella Support Systems." In proceedings of the 15th Australasian Tunneling Conference 2014, Sydney, Australia, 17-19 September 2014, pp. 333-338
- Volkmann, G.M., Moritz, B., Schneider, K.M., 2015:


"Application of the Pipe Umbrella Support System at the Koralm Tunnel KAT 3." In Underground Design and Construction Conference 2015, Eds. G. Bridges, W.L. Siu & A. Dias, Hong Kong, China, 11-12 September 2015, The Institute of Materials, Minerals and Mining (Hong Kong Branch), ISBN 978-988-18778-8-8, pp. 313-321

- Volkmann, G.M. 2017:
 "Function, Design, and Specifications for Pipe Umbrella Support Systems."
 Doctoral Thesis, Graz University of Technology, Department of Civil Engineering, Institute for Rock Mechanics and Tunneling, Graz, Austria
- Volkmann G.M. & D. Glantschnegg, 2017:

"Optimization Potential Regarding Safety, Material, and Installation Time for Pipe Umbrella Installation Methods." In proceedings of the 16th Australasian Tunnelling Conference 2017, Challenging Underground Space: Bigger, Better, More, 30 October – 1 November 2017; Sydney, Australia

AT – Pipe Umbrella System at a Glance

US-B 7,080,697, AT-E 0 332 436, 502 07 438.8-08, ES 2262838 T5, EP-B 1 381 756, EP-B 1 381 756, TR 2006 03585 T4, AT-B 504 022, DE-C 101 05 827, DE 101 19569, HK 1066581, AT-B 501 875, AT-E 0 372 442, 50 2004 004 906.0-08, EP-B 1 682 745, AT-E 0 202 045, 598 00 872.1, AT-E 0 514 836, EP-B 0 1 888 878, AT-E 0 549 545, EP-B 1 886 056, 50 2006 004 522.2-08, EP-B 1 886 056, AT-E 715 471, DE 50 2006 014 239.2, EP-B 1 915 505, AT-B 508 617, AT-U 12 096, DE 10 2009 038 813, DE 10 2007 012 220, DE 10 2007 029548, AT-U12444, AT-B 512 243, AT-E 614 034, EP-B 2 473 296, AT-U 13 162, AT-U 13 292, AT-E 705 881, EP-B 2 556 205, AT-U 13 738, AT-U 14 223, 14 450 008.9, AT-E 832 944, 50 2013 004 779.2, EP-B 2 836 680, AT-U 14 877, AT-U 15014, AT-U 15 453, AT-U 15 452, AT-E 926 230, 50 2014 005 373.6, EP-B 3 027 920

"ALWAG" (AM 952/79, AM 3571/2008),
"AT" (AM 6138/2003),
"AT-SYSTEM" (AM 6139/2003),
"LSC" (AM 4326/2008),
"OMEGA-BOLT[®]" (3258282),
"POWER SET" (AM 6163/2002),
"ALWAGRIP" (AM 4327/2008), and
"TUBESPILE" (AM 4328/2008)
are registered trademarks of DSI Underground

Please note:

This brochure serves basic information purposes only. Technical data and information provided herein shall be considered non-binding and may be subject to change without notice. We do not assume any liability for losses or damages attributed to the use of this technical data and any improper use of our products. Should you require further information on particular products, please do not hesitate to contact us.

Mexico

DSI Underground México, S. A. De C. V. Avenida Aviación 1002, Colonia San Juan de Ocotá 45019, Zapopan Mexico

Phone+52 3336 60119E-maildsimexico@dsiunderground.com

www.dsiunderground.cl

Canada

DSI Underground Canada Ltd. 3919 Millar Avenue SK S7P 0C1 Saskatoon Canada

Phone +1 306 2446244 E-mail orderdesk@dsiunderground.com

www.dsiunderground.ca

DSI Tunneling LLC 1032 East Chestnut Street KY 40204 Louisville USA

Phone +1 502 4731010
E-mail dsiunderground@dsiunderground.com

www.dsitunneling.com